A Branch-And-Cut-And-Price Algorithm for the Capacitated Location Routing Problem

Claudio Contardo1,3 Jean-François Cordeau2,3 Bernard Gendron1,3

1Département d’informatique et de recherche opérationnelle
Université de Montréal

2HEC Montréal

3Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport
(CIRRELT)

December 10, 2009
A Branch-And-Cut-And-Price Algorithm for the Capacitated Location Routing Problem

Contents

1 Introduction

2 A New 2-index Formulation

3 Valid Inequalities

4 Pricing Problem

5 Computational Results

6 Conclusions and Further Research
1 Introduction

2 A New 2-index Formulation

3 Valid Inequalities

4 Pricing Problem

5 Computational Results

6 Conclusions and Further Research
Problem Description

- **Input**
 - Set of Potential Facilities I. Each facility i has capacity b_i and opening fixed cost f_i
 - Set of Customers J. Each customer j has demand d_j
 - Vertex set $V = I \cup J$, Edge set E
 - Fleet of size K. Each vehicle has capacity Q_k
 - Direct ride cost c_e for every edge $e \in E$

- **Output**
 - K or less simple tours
 - Demand of customers J is satisfied
 - Vehicles do not depass their capacity Q_k
 - Facilities do not depass their capacity b_i
 - Total Cost (Fixed Cost + Routing Cost) is minimized
Previous Work

■ Heuristics
 ■ Sequential Methods (Perl and Daskin 1985)
 ■ Iterative Methods (Wu et al. 2002)
 ■ Metaheuristics (Tuzun and Burke 1999)

■ Exact Methods
 ■ Branch-and-bound (Laporte et al. 1986)
 ■ Branch-and-cut (Prodhon 2006, Contardo et al. 2009)
1 Introduction

2 A New 2-index Formulation

3 Valid Inequalities

4 Pricing Problem

5 Computational Results

6 Conclusions and Further Research
Assumptions and Consequences

- **Assumptions**
 - Homogeneous Fleet: $Q_k = Q$ for all k
 - Homogeneous Facilities: $b_i = b$ for all i
 - Symmetric Network: $c_{ij} = c_{ji}$ for every pair of arcs $(i,j), (j,i)$

- **Consequences**
 - Minimum number of vehicles needed to serve $S \subseteq J$: $r(S)$
 - $r(S)$ can be replaced by $k(S) = \left\lceil \frac{d(S)}{Q} \right\rceil$
 - Minimum number of facilities needed to serve $S \subseteq J$: $\rho(S)$
 - $\rho(S)$ can be replaced by $\kappa(S) = \left\lceil \frac{d(S)}{b} \right\rceil$
 - The homogeneous structure of facilities had not yet been exploited!!
Formulations

- Three-index formulation (Perl and Daskin 1985).
 - Weak bounds
 - Tight bounds.
 - Valid Inequalities: Cover Inequalities (COV), \(y \)-Capacity Cuts (\(y \)-CC), \(y \)-Effective Facility Capacity Inequalities (\(y \)-EFCI), Location-Routing Comb Inequalities (LR-COMB), \(y \)-Chain Barring Constraints (\(y \)-CBC), etc.
 - Tighter bounds.
 - Solved by column generation. Pricing problem is a SPPRC (\(k \)-cycle, elementary).
 - Valid Inequalities: Strengthened Capacity Cuts (SCC), Clique Inequalities (CLI).
Variables and Notation

- $\Omega = \{\omega : \omega \in \text{routes}\}$.
- for $i \in I$, $\Omega_i = \{\omega \in \Omega : \omega$ starts and ends at facility $i\}$.
- $\Omega^M = \{\omega \in \Omega : \omega$ serves multiple customers (2 or more)\}$.
- $\Omega^S = \{\omega \in \Omega : \omega$ serves a single customer\}$.
- for $\omega \in \Omega$, λ_ω equal to 1 iff route ω is selected.
- for $i \in I$, z_i equal to 1 iff facility i is selected.
- There exists a relationship between two-index variables and λ_ω’s.
1. Introduction

2. A New 2-index Formulation

3. Valid Inequalities

4. Pricing Problem

5. Computational Results

6. Conclusions and Further Research
Valid Inequalities

- Derived from the 2-index formulation
 - y-Vehicle Capacity Constraints
 - y-Chain Barring Constraints
 - y-Effective Facility Capacity Inequalities
 - Location-Routing Comb Inequalities
 - Generalized Large Multistar Inequalities
 - All cuts valid for the CVRP

- Derived from the set partitioning formulation
 - Clique Inequalities

- Strengthened Constraints
 - Strengthened Capacity Cuts (SCC) (Baldacci et al. 2009)
 - y-SCC (NEW!)
 - y-Strengthened FCI (y-SFCI, NEW!)
 - y-Strengthened EFCI (y-SEFCI, NEW!)
Capacity Cuts

2-index formulation

- **CC**
 \[x(\delta(S)) + 2y(I : S) \geq 2r(S) \] (1)

- **y-CC**
 \[x(\delta(S)) + 2y(I : S - S') \geq 2r(S) \] (2)

Set partitioning formulation

- **SCC (Baldacci et al. 2009)**
 \[\lambda(\{l \in \Omega : J(l) \cap S \neq \emptyset\}) \geq r(S) \] (3)

- **y-SCC (NEW!)**
 \[\lambda(\{l \in \Omega^M : J(l) \cap S \neq \emptyset\}) + \lambda(\{l \in \Omega^S : j(l) \in S - S'\}) \geq r(S) \] (4)
Pricing Problem

- Pricing problem is a shortest path under resource constraints (SPPRC). It must be run $|I|$ times.
- Strengthened Constraints (y-SCC, y-SFCl, y-SEFCI) added as resources.
- Elementary (ESPPRC, Feillet et al. (2004), Jepsen et al. (2008)) or without k-cycles (k-SPPRC, Irnich and Villeneuve (2006)).
- Solved by dynamic programming. Usually the bottleneck in B&C&P algorithms
 - Heuristic accelerations
 - Solve for a small number of customers (found by MST, SPP).
 - Bound somehow the number of labels (paths) kept during the algorithm execution.
 - Exact accelerations
 - Graph reduction using reduced costs on edges from the solution of the 2-index LR.
 - Perform efficient and tight domination rules.
 - Discard useless labels.
1 Introduction

2 A New 2-index Formulation

3 Valid Inequalities

4 Pricing Problem

5 Computational Results

6 Conclusions and Further Research
Computational Results

| Instance Name | | | BKS | | | Prodhon (2006) | | | Contardo et al. (2009) | | | This paper | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| q05 | 21 | 5 | 424.9 | 403.7 | 0.5 | 4.99 | 404.5 | 0.4 | 4.8 | 422.9 | 9.54 | 0.5 |
| q06 | 22 | 5 | 585.1 | 577.5 | 0.5 | 1.3 | 576.6 | 0.2 | 1.45 | 585.1 | 3.87 | 0.0 |
| q07 | 29 | 5 | 512.1 | 446.3 | 0.5 | 12.85 | 474.1 | 0.8 | 7.42 | 499.0 | 329.0 | 2.56 |
| q08 | 32 | 5 | 571.9 | 518.2 | 1.2 | 9.39 | 524.8 | 1.2 | 8.24 | 545.2 | 2116 | 4.67 |
| q09 | 32 | 5 | 504.3 | 477.8 | 0.4 | 5.25 | 482.9 | 1.0 | 4.24 | 500.5 | 876.2 | 0.75 |
| q10 | 36 | 5 | 460.4 | 433.2 | 3.2 | 5.91 | 436.4 | 2.0 | 5.21 | 455.0 | 437.5 | 1.17 |

Table: Root Relaxation
Computational Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB</td>
<td>UB</td>
<td>Gap(%)</td>
<td>T(s)</td>
<td>Nodes</td>
<td>LB</td>
<td>UB</td>
</tr>
<tr>
<td>q05</td>
<td>21</td>
<td>5</td>
<td>424.9</td>
<td>424.9</td>
<td>4.9</td>
<td>27</td>
<td>424.9</td>
</tr>
<tr>
<td>q06</td>
<td>22</td>
<td>5</td>
<td>585.1</td>
<td>585.1</td>
<td>0.9</td>
<td>3</td>
<td>585.1</td>
</tr>
<tr>
<td>q07</td>
<td>29</td>
<td>5</td>
<td>512.1</td>
<td>512.1</td>
<td>17.7</td>
<td>260</td>
<td>512.1</td>
</tr>
<tr>
<td>q08</td>
<td>32</td>
<td>5</td>
<td>571.9</td>
<td>562</td>
<td>14.9</td>
<td>36</td>
<td>562.2</td>
</tr>
<tr>
<td>q09</td>
<td>32</td>
<td>5</td>
<td>504.3</td>
<td>504.3</td>
<td>0.9</td>
<td>5</td>
<td>504.3</td>
</tr>
<tr>
<td>q10</td>
<td>36</td>
<td>5</td>
<td>460.4</td>
<td>460.4</td>
<td>14.3</td>
<td>14</td>
<td>460.4</td>
</tr>
</tbody>
</table>

Table: Branch-And-Bound
1 Introduction

2 A New 2-index Formulation

3 Valid Inequalities

4 Pricing Problem

5 Computational Results

6 Conclusions and Further Research
Conclusions and Further Research

- Combine in the same model the strength of two-index with the set partitioning formulations
- Provide new valid inequalities that strengthen the bounds
- Bottleneck is pricing problem. We easily find columns of negative reduced cost at the beginning. At the end it becomes much more difficult.
References I

References II

