The Simultaneous Vehicle Scheduling and Passenger Service Problem

Oli B.G. Madsen
Professor, Dr.Techn., Ph.D.
Technical University of Denmark
Joint work with

• Allan Larsen, DTU Transport

• Hanne Løhmann Petersen, DTU Transport

• Stefan Ropke, DTU Transport

This work forms a part of Hanne L. Petersens Ph.D.-thesis
The sequential planning approach
The Vehicle Scheduling Problem (VSP)

- Given a timetable
- Assign vehicles to trips
- All trips must be operated
- Lowest possible cost

- The problem is solved by the operator
- The service requirements are given by the service provider (authorities)

- Usually timetabling and vehicle scheduling are solved sequentially
The multi depot vehicle scheduling problem

Surveys:

• Desrosiers, Dumas, Solomon and Soumis 1995

• Desaulniers and Hickman 2007

• Pepin, Desaulniers, Hertz and Huisman 2009

Papers:

• Löbel 1999

• Hadjar, Marcotte and Soumis 2006
The Simultaneous Vehicle Scheduling and Passenger Service Problem (SVSPSP)

- The timetable is still given but it is allowed to make small changes in the timetable

Main idea:
During the vehicle scheduling, bus timetables can be modified (timeshifted)

- The objective is twofold:
 - Solve the vehicle scheduling problem
 - Reduce the passenger waiting time
- SVSPSP allows the timetable to be modified
- Frequencies/levels of service are kept unaltered
- Driving and dwell times are not changed
The sequential planning approach
The Simultaneous Vehicle Scheduling and Passenger Service Problem – related papers

- Serafini and Ukovich 1989 (PESP, Periodic Event Scheduling Problem)

- Liebchen and Möhring 2007 (PESP and extensions)
 - Periodic schedules and no deadheading

 - Passenger waiting times are ignored

- Wong, Yuen, Fung and Leung 2008
 - No. of vehicles is kept constant

- Guihaire and Hao 2008
 - The single depot case
 - No. of vehicles, quality of transfer and frequency regularity
The Simultaneous Vehicle Scheduling and Passenger Service Problem – related papers

• Serafini and Ukovich 1989 (PESP, Periodic Event Scheduling Problem)

• Liebchen and Möhring 2007 (PESP and extensions)
 – No deadheading and periodic schedules

• Van den Heuvel, van den Akker and van Koten Niekerk 2008
 – Passenger waiting times are ignored

• Wong, Yuen, Fung and Leung 2008
 – No. of vehicles is kept constant

• Guihaire and Hao 2008
 – The single depot case
 – No. of vehicles, quality of transfer and frequency regularity
 – Most similar to our problem
The local train network of Copenhagen
The S-bus network; trains are shown as thin lines
SVSPSP II

• Input
 – Initial bus time table
 – Fixed train timetable !!
 – Number of transferring passengers
 – Costs (waiting time, deadheading, vehicles)

• Output
 – Updated bus timetable
 – Passenger waiting time (value of time)
 – Cost

• The waiting time is considered relative to trains and busses
• Memorability of the timetable is not considered
Real-life aspects in the project

We have the following data:

• Bus and train networks
• Train timetables
• Original bus timetables
• Activity estimates for stations and time of the day

Data we don’t have:

• (Dis)Embarking passenger counts
 – Based on: Line, time of the day, station
• Transfer distribution
 – Estimated from driving direction and knowledge of the network
Model

Each trip in the original timetable is converted to a metatrip

- Specifies different possible departure times for the trip
- Each subtrip belonging to a metatrip represents a copy of the original trip
- Each metatrip must be covered
- Not all single trips (subtrips) are covered (only one trip within each metatrip)
Incompatible trips

- Mutually incompatible trips
- For example trip 6 and 7 (too close)
- - and may be trip 2 and 11 (too far apart)

- If departures at regular intervals are required trip 2 may be incompatible with for example 8, 9, 10 and 11
Mathematical models

• Model 1: Simpler model where only shifts between trains to busses and busses to trains are allowed

• Model 2: More complex model also allowing shifts between busses
Mathematical models

- Model 1: Simpler model where only shifts between trains to busses and busses to trains are allowed

- Model 2: More complex model also allowing shifts between busses

- Even model 1 can only be solved to optimality for very small instances by standard optimization software
 - We are developing a heuristic method based on large neighbourhood search
Large Neighbourhood Search (LNS)

- Initial solution: Greedy heuristics (does not consider time shifting)

- Destroy: Remove r trips (for example 5-30 trips)
 - Random trips (prob. 0.15)
 - Similar trips: Shared end points, close in time (relatedness, Shaw 1998) (prob. 0.85)
 - Select an initial seed trip at random
 - Calculate the relatedness measure
 - Select trip to be removed favouring trips with high relatedness value

- Repair: Reinsert removed trips using a randomised greedy heuristic and based on a calculated insertion cost
 - Insert cheapest trip
 - The chosen trip should be compatible with all active trips

- Acceptance: Like in Simulated Annealing
Test instance: S-busses and local trains in CPH
Test instances

• 3 lines. 538 trips.
 – All bus lines are circular lines with 5–6 intersections with the train network, but only few interconnections between the buses. Many passengers.

• 5 lines, 792 trips.
 – All bus lines are circular lines with 4–6 intersections with the train network, and only few interconnections between the buses. Some lines are passenger intensive.

• 8 line, 1400 trips.
 – Combination of circular and radial bus lines. The radial lines only have 2–3 connections to trains, but more connections to other buses. Most lines are passenger intensive.
Results

- **cost**: Cost reduction compared to the initial solution (waiting costs, deadheading costs, vehicle costs)

- **empty**: The reduction of empty mileage costs

- **time**: The reduction of total passenger waiting time

- **shifts**: The percentage of the original trips that have been time shifted

- **mem.**: The percentage of trips for which the gap to the preceding trip on the same line is a multiple of 5

<table>
<thead>
<tr>
<th></th>
<th>3 lines</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cost</td>
<td>empty</td>
<td>time</td>
<td>shifts</td>
<td>mem.</td>
</tr>
<tr>
<td>1h</td>
<td>2.9%</td>
<td>-14.2%</td>
<td>16.5%</td>
<td>74.2%</td>
<td>39.7%</td>
</tr>
<tr>
<td>6h</td>
<td>3.1%</td>
<td>-13.0%</td>
<td>17.4%</td>
<td>73.4%</td>
<td>43.2%</td>
</tr>
<tr>
<td>24h</td>
<td>3.3%</td>
<td>-8.9%</td>
<td>18.1%</td>
<td>73.8%</td>
<td>48.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>8 lines</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cost</td>
<td>empty</td>
<td>time</td>
<td>shifts</td>
<td>mem.</td>
</tr>
<tr>
<td>1h</td>
<td>1.1%</td>
<td>-7.8%</td>
<td>9.5%</td>
<td>64.2%</td>
<td>30.4%</td>
</tr>
<tr>
<td>6h</td>
<td>1.6%</td>
<td>-6.4%</td>
<td>13.3%</td>
<td>76.6%</td>
<td>31.4%</td>
</tr>
<tr>
<td>24h</td>
<td>2.0%</td>
<td>-7.1%</td>
<td>16.4%</td>
<td>76.4%</td>
<td>36.0%</td>
</tr>
</tbody>
</table>
Sensitivity analysis

<table>
<thead>
<tr>
<th></th>
<th>cost</th>
<th>empty</th>
<th>time</th>
<th>shifts</th>
<th>mem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1h</td>
<td>2.9%</td>
<td>-14.2%</td>
<td>16.5%</td>
<td>74.2%</td>
<td>39.7%</td>
</tr>
<tr>
<td>6h</td>
<td>3.1%</td>
<td>-13.0%</td>
<td>17.4%</td>
<td>73.4%</td>
<td>43.2%</td>
</tr>
<tr>
<td>24h</td>
<td>3.3%</td>
<td>-8.9%</td>
<td>18.1%</td>
<td>73.8%</td>
<td>48.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cost</th>
<th>empty</th>
<th>time</th>
<th>shifts</th>
<th>mem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1h</td>
<td>1.1%</td>
<td>-7.8%</td>
<td>9.5%</td>
<td>64.2%</td>
<td>30.4%</td>
</tr>
<tr>
<td>6h</td>
<td>1.6%</td>
<td>-6.4%</td>
<td>13.3%</td>
<td>76.0%</td>
<td>31.4%</td>
</tr>
<tr>
<td>24h</td>
<td>2.0%</td>
<td>-7.1%</td>
<td>16.4%</td>
<td>76.4%</td>
<td>36.0%</td>
</tr>
</tbody>
</table>

- **cost**: Cost reduction compared to the initial solution (waiting costs, deadheading costs, vehicle costs)
- **empty**: The reduction of empty mileage costs
- **time**: The reduction of total passenger waiting time
- **shifts**: The percentage of trips that have been time shifted
- **mem.**: The percentage of trips for which the gap to the preceding trip on the same line is a multiple of 5

Sensitivity analysis on the distribution of passenger transfers did not change the results significantly.
Conclusion

- The Simultaneous Vehicle Scheduling and Passenger Service Problem presents a new way of integrating timetabling and vehicle scheduling
 - The results based on large neighbourhood search heuristic are promising
 - 16% reduction in passenger waiting time using the same number of busses
 - An increase in deadheading was necessary
 - Better data are required for a real-life implementation
Further research

• Getting better data (TU data and later on a General Travel Card)

• Developing exact solution methods

• Investigation of the result of better solutions:
 – change in passenger behaviour
 – increased number of passengers
Thank you for your attention

Oli B.G. Madsen
Department of Transport, Build. 115
Technical University of Denmark
DK 2800 Kgs. Lyngby
Denmark
ogm@transport.dtu.dk