Models and algorithms for the Transit Network Design Problem

H. Cancela, A. Mauttone, M. Urquhart and O. Viera

urquhart@fing.edu.uy

Operations Research Department
Universidad de la República, Uruguay
Contents

- Public Transport planning process.
- TNDP: the problem and the system.
- Models and algorithms
 - GraspTNDP
 - Pair insertion construction algorithm.
- A real case: Rivera city.
- IgoR-tp a software tool.
- Present and future
Public transportation planning process (Ceder y Wilson, 1986)

<table>
<thead>
<tr>
<th>Step</th>
<th>Decision</th>
<th>Objectives</th>
<th>Who decides</th>
<th>Horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network design & Frequency setting</td>
<td>Routes and Frequencies</td>
<td>Minimize traveling and operating costs</td>
<td>Authorities</td>
<td>Long term (strategic planning)</td>
</tr>
<tr>
<td>Timetabling</td>
<td>Time tables</td>
<td>Minimize traveling and operating costs</td>
<td>Authorities and transport-companies</td>
<td>Medium/short</td>
</tr>
<tr>
<td>Vehicle scheduling</td>
<td>Associate trips to buses</td>
<td>Minimize operation costs</td>
<td>Transport companies</td>
<td>Medium/short (operational Planning)</td>
</tr>
<tr>
<td>Crew scheduling,</td>
<td>Associate shifts and drivers</td>
<td>Minimize operating costs</td>
<td>Transport companies</td>
<td>Medium/short (operational planning)</td>
</tr>
</tbody>
</table>
Transit Network Design Problem - TNDP

- to find a set of routes R with their corresponding frequencies F for an urban public transportation system.

$S = (R, F)$ is a solution

$R = \{r_1, r_2, \ldots, r_r\} \subseteq \Omega$

$F = \{f_1, f_2, \ldots, f_r\} \subseteq \mathbb{R}^+$

- minimizing the conflicting objectives
 - passengers discomfort and
 - companies operating cost.
Transit network design problem

- **Objectives:**
 - Users: min eg on-board, transfer and waiting times.
 - Operators: min fleet size.

- **Constraints:**
 - Demand satisfaction
 - Required level of service
 - Resource availability

- **Decision Variables:**
 - Routes & Frequencies

- **Data:**
 - Street network
 - Demand of trips
Network & Demand Models

\(G : (N,E,C); \)

\(N = \{i \in [1..n]\} \) bus stop or centroids,

\(E = \{e (i,j), \text{ connections}\} \)

\(C = \{c_e, \text{ on board time}\} \)

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 0 & 80 & 70 & 160 & 50 & 200 & 120 & 60 \\
2 & 80 & 0 & 120 & 90 & 100 & 70 & 250 & 70 \\
3 & 70 & 120 & 0 & 180 & 150 & 120 & 30 & 250 \\
4 & 160 & 90 & 180 & 0 & 80 & 210 & 170 & 230 \\
5 & 50 & 100 & 150 & 80 & 0 & 250 & 40 & 130 \\
6 & 200 & 70 & 120 & 210 & 250 & 0 & 130 & 120 \\
7 & 120 & 250 & 30 & 170 & 40 & 130 & 0 & 70 \\
8 & 60 & 70 & 250 & 230 & 130 & 120 & 120 & 0 \\
\end{array}
\]

Origin-destination Matrix:

\(D = \{d_{ij}, i,j \in [1..n]\}\)

\(d_{ij} : \text{ number of trips per time unit in a given time horizon} \)

\(S = (R,F), \text{ route } k = (1,2,4,7,4,2,1), \)

\(\text{If } f_k=3/60; 3*100/60 = 5 \text{ buses} \)
TNDP- multi objective model

\[
\begin{align*}
\text{Min} \quad z_1(S) &= \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} (tv_{ij} + tw_{ij} + tt_{ij}) \\
\text{Min} \quad z_2(S) &= \sum_{r_k \in R} f_k t_k
\end{align*}
\]

\[D_0(S) \geq D_0^{\min} \in [0,1] \]

\[D_{01}(S) \geq D_{01}^{\min} \in [0,1] \]

\[f_{\min} \leq f_k \leq f_{\max} \quad \forall f_k \in F \]

\[f_k \geq \frac{\max \phi_k(S)}{w_{\max} Q} \quad \forall f_k \in F \]

Passengers overall time.

Fleet size.

Proportion of Tot demand

- without transfer,

- with at least 1 transfer.

Lower & upper bounds for frequencies.

Max Load factor
TNDP - difficulties

- **High combinatorial complexity**: it is a complex variant of the generalized network design problem [Magnanti and Wang, 1984], which is NP-hard [Israeli and Cedër, 1993]

- Requires an **assignment submodel**: requires a behaviour model of the passengers concerning the routes and frequencies of a given solution, to evaluate the solution.

- **Multi-objective nature**: the existence of conflicting objectives adds complexity to the problem, both in the *a priori* estimation of the relative importance of the objectives, and in the calculation of several solutions with different trade-off levels between the objectives (*aposteriori*). Another estimation of the relative importance of the objectives is the *Interactive one*.
The assignment model

- It is a subproblem of the TNDP, a hard problem by itself.

- One of the existing models is the common lines and transfers model of Baaj and Mahmassani (1990).

- It produces a set of flows $\Phi(S)$ (for a given S), which specifies how the demand is distributed among a given set of routes, and suggests feasible frequencies.

Example of the distribution of the demand of trips

Assigns passengers to routes, There are different alternatives for the same pair of vertices i,j
MOCO - Multi Objective Comb. Optimization

(Ehrgott y Gandibleux, 2004).

Decision space

Objective space

Feasible set $C = \{S_1, S_2, S_4\}$.
Non dominated $Y_N = \{f(s_1), f(s_2), f(s_4)\}$.
S_4 dominates S_3.
S_1, S_2, S_4 are non dominated.
Pareto Fronts (Erhgott, 2005)

- Optimal Pareto Front (exact solution)
- Subset of the optimal Pareto Front
- Set of non dominated solution (not necessary optimal)

GRASP-TNDP
GRASP-TNDP: (Mauttone and Urquhart, CASPT 2006)

```
procedure GRASP-TNDP(in parameters, out P);
Calc shortest path between all pair vertices of G
P ← ∅;
for i = 1 to NumIterations do
    tmax ← random unif value in given interval;
    Construction (G,...,tmax, ..., R);
    F ← Initial frequencies;
    S ← (R,F);
    λ ← Random vectors of weights
    Local Search (λ,S,P);
    Delete dominated solutions of P;
end for;
return P;
end GRASP_TNDP;
```

Greedy Randomized Adaptive Search Procedures (Feo & Resende, 1995)
GRASP Multi-objective

- Solutions obtained with the construction procedure, set of routes that cover the demand
- Local Search trajectory
- Solutions obtained with the local search procedure
- Pareto Front
GRASP-TNDP: Construction

PIA- Pair Insertion Algorithm

(Mauttone y Urquhart, 2009).

- Produces a set of routes which satisfies the demand

 1. using the shortest path between pairs of vertices with high demand, measured in on-board time;

 2. inserting pairs of vertices in already constructed routes in the solution under consideration.
TNDP: PIA algorithm

procedure PIA(in parameters, out R);
 R := 0 ;; initialize variables;
 l :- List of pairs of vertices (i; j) of G with \(\text{dij} \neq 0 \);
 while demand do
 \((u; v)\) :- Select \((i; j)\) with maximum \(\text{dij} \) in \(l \);
 \(r\) :- Create a route with the shortest path between \(u \) and \(v \) in \(G \);
 \(r'\):- Create a route by inserting \(u \) and \(v \) in the most suitable positions in the most
 convenient route \(r'' \) in \(R \), by calling Candidate\((u; v; R; r^0)\);
 if cost\((r)\) < cost\((r') - cost(r'')\) then
 \(R := R \cup \{r\}\);
 Delete from \(l \) pairs of vertices whose demand is covered directly by \(r \);
 else
 \(R := R \cup \{r^0\} \setminus \{r''\}\);
 Delete from \(l \) pairs of vertices whose demand is covered directly by \(r' \);
 end if;
 Update demand;
 end while;
 Filter routes in \(R \);
 return \(R \);
end PIA;
Pair Insertion Algorithm: example

Empty set of routes
Pair Insertion Algorithm: example

Selected pair of vertices with high demand
Pair Insertion Algorithm: example

Construction of a new route with the shortest path measured in terms of on board time:
Pair Insertion Algorithm: example

Another pair with high demand is selected.
Pair Insertion Algorithm: example

The selected pair of vertices is inserted in the existing route.
Another pair of vertices with high demand is selected.
Pair Insertion Algorithm: example

A convenient new route is created
Case of study: Rivera city

Rivera instance: http/www.fing.edu.uy/~mauttone/tndp

- 65000 inhabitants - Medium –small instance
- 13 bus-lines.
- Mean length of routes: 13,6 Km.
- Frequencies 20, 30, 40 y 60 minutes.
- **Fleet size (buses): 23.**
- Demand: 13360 trips per day (Monday-Friday).
- On-board Bus Survey done in 2004. (based on Stopher *et al.* (1986)).
- Household Survey done in 2007. (Celina Gutierrez)
Results

![Graph](image)

- Operators' cost, $Z_2(S)$
- Users' cost, $Z_1(S)$

Legend:
- **GRASP TNDP**
- **Rivera**
A decision support system that helps researcher to:
- create and maintain different projects;
- experiment with new algorithms and models;
- evaluate solutions;
- support data processing by handling geographical and origin-destination data and O-D matrixes.
- visualize both numerical and geographical information (medium small instances);

- It is developed within our project using the open source mapwindow. (http://www.mapwindow.org/).
- It is compatible with the ESRI format.
IgoR-tp: assembling the demand
IgoR tp – Algorithms

Nueva Configuración de Algoritmo

Nombre: Heuristica_1
Ubicación del Algoritmo: F:\caso Rivera
Cantidad de pasajeros: 10, 15, 20

Nueva Configuración de Algoritmo

Parámetros

Nombre de la solución: Sol_heuristica_2
Selezione una configuración de flota

Generar Recorridos...

Complete los parámetros necesarios

Demanda directa: 0.8
Tamaño de flota: 23
Bus Lines System of Rivera
Alternative Solution (Lucas Faccelo, 2007)
Ongoing and future work

- Up to now, IgoR-TP is for research purposes, however, it may be extended with features oriented to the transit planner.

- We are working with new models and algorithms for the TNDP.
 - Bi-level mathematical programming formulation and exact calculation of very small cases.
 - Our focus is more on the definition of routes.

- Colaborate with the Municipalities as far as possible…
References

Thank you

Engineering Faculty

UDELAR, Uruguay