Routing and scheduling in liner shipping

Karina H Kjeldsen

CORAL – Centre for Operations Research Applications in Logistics Aarhus School of Business

Currently visiting CIRRELT

From www.maersk.com
Outline of presentation

- Liner shipping
 - What is it?
 - Why is it important?
- Liner shipping and the literature
- Weekly frequency
- The heuristic
- Future work
Liner shipping – what is it?

Characteristics of liner shipping:
- Maritime transportation of containerized cargo
- Published time schedules
- Demand dependent on service provided
- Closed routes
- Ships rarely empty
- Transshipments

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Terminal Name</th>
<th>Arrival Date</th>
<th>Departure Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salalah</td>
<td>Salalah Terminal</td>
<td>16 Dec 2009 22:00</td>
<td>18 Dec 2009 06:00</td>
</tr>
<tr>
<td>Suez Canal</td>
<td>Canal Zone Terminal</td>
<td>22 Dec 2009 01:00</td>
<td>22 Dec 2009 17:00</td>
</tr>
<tr>
<td>Algeciras</td>
<td>Algeciras - ML Terminal</td>
<td>26 Dec 2009 08:00</td>
<td>27 Dec 2009 20:00</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>APM Terminals Rotterdam</td>
<td>30 Dec 2009 15:00</td>
<td>31 Dec 2009 15:00</td>
</tr>
<tr>
<td>Bremerhaven</td>
<td>NTB North Sea Terminal Bremerhaven</td>
<td>02 Jan 2010 06:00</td>
<td>03 Jan 2010 14:00</td>
</tr>
<tr>
<td>Port Tangier Mediterranee</td>
<td>Port Tangier Mediterranee</td>
<td>09 Jan 2010 02:00</td>
<td>10 Jan 2010 05:00</td>
</tr>
</tbody>
</table>
Liner shipping – why is it important?

- Heavy pressure on road and air networks
- 9.6% growth per year from 1990 to 2005 in container tonnage
- Highly fragmented industry; mergers and acquisitions expected
- Little research to support the area
Literature
- modeling liner shipping

- All feasible schedules generated
 - Fagerholt and Lindstad; Optimal policies for maintaining a supply service in the Norwegian sea. Omega, 2000.

- Limited voyage length
Literature
- modeling liner shipping

- Upper limit on number of ships
 - Agarwal and Ergun; Ship scheduling and network design for cargo routing in liner shipping. Transportation Science, 2008.

- No service requirements
Requirement for research

Routing and scheduling of a liner fleet and cargo routing

While ensuring that the model and solution method:
- can handle a global network size
- has speed as a decision variable
- has no time horizon
- has a service requirement (frequency)
Ships and routes in Liner Shipping

- Several ship types
- One route - one type
- One route per ship
Weekly frequency and how it is obtained

- The duration of a route in weeks is equal to the number of ships required.
- a) 4 week roundtrip with 4 ships at a speed of 19.4 knots
- c) 5 week roundtrip with 5 ships at a speed of 14.0 knots
Weekly frequency and the effect on the model

- Routes
 - Initially 1 ship per route
 - Fix speed and time required
 - Time required = required # ships

- Costs
 - Routes with varying duration
 - Costs on weekly basis
 - Time horizon irrelevant
Formulation and solution method

- Flow model
 - NP hard
 - Non-linear objective function and constraints

- Heuristic solution method
 - Generalized set partitioning based heuristic
 - Optimize ‘master’ problem via CPLEX
Heuristic – schematic presentation

1. Generate support columns.
2. Generate initial columns.
3. Solve LP-master
 - Is there any surplus? Yes: Generate columns. No: Is the solution integer?
 - Yes: Final solution found.
 - No: Fix variable closest to 1 to 1.
Master problem
- formulation

\[
\begin{align*}
\text{min} & \quad \sum_{r \in R} C_r y_r \\
\text{s.t.} & \quad \sum_{r \in R} L_{mrq} i y_r = 1, \quad \forall m \in M, q = 0, i = 0, \\
& \quad \sum_{r \in R} L_{mrq} i y_r = 0, \quad \forall m \in M, q \in Q_m \setminus \{0\}, i \in I_{mq} \setminus \{0\}, \\
& \quad \sum_{r \in R} UV_r y_r \leq AV_t, \quad \forall t \in T, \\
& \quad L_{mrq} \in \{-1, 0, 1\}, \quad \forall m \in M, r \in R, q \in Q_m, i \in I_{mq}, \\
& \quad y_r \in \{0, 1\}, \quad \forall r \in R, \\
& \quad AV_t, UV_r \quad \text{integer}, \quad \forall t \in T, r \in R
\end{align*}
\]

- Minimize cost of selected routes
- All demand must load
- Transshipment cargo is loaded on all legs
- Only use available ships
Master problem – coefficients

<table>
<thead>
<tr>
<th>Route #</th>
<th>4</th>
<th>7</th>
<th>11</th>
<th>14</th>
<th>15</th>
<th>20</th>
<th>T/S 3-4</th>
<th>T/S 4-2</th>
<th>T/S 4-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ships</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><= 5</td>
<td><= 2</td>
<td></td>
</tr>
<tr>
<td>Type A</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4-1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/S (leg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>1-4</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4-2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>-1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4-3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>COST ('000)</td>
<td>1.503</td>
<td>311</td>
<td>156</td>
<td>871</td>
<td>690</td>
<td>873</td>
<td>113</td>
<td>16</td>
<td>31</td>
</tr>
</tbody>
</table>

- Constraining the number of ships used
- Ensuring all demand is loaded
- Ensuring all transshipment done correctly
- The cost of the routes
Heuristic – support columns

- One column per transshipment option

- \(L_{mrqi} = 1 \)
 - Direct loading of the cargo

- \(L_{mrqi} = -1 \)
 - Leg of the current transshipment option for the cargo

- Cost
 - The cost per transshipment move in the port of transshipment times the volume of the cargo
Heuristic –
initial columns 1

- All sets with 3 – 20 ports are generated based on following set minimizing initiatives:
 - Min 2 ports per region unless it is a hub
 - Min 1 hub per route
 - Upper limit on number of regions in a route
- The order of the ports is fixed by solving a TSP
- All possible cargo is loaded
 - Direct loading has priority
- Minimal cargo calculated based on the direction of the route
Heuristic – initial columns 2

- The cost is calculated based on
 - Which ship type is used
 - What number of ships is used
 - What speed is used
 - Which ports are included in the route
- Columns added based on
 - Cost
 - Capacity utilization
- If no columns are added, the dummy ship type is used
Heuristic – restricted LP-master

\[
\begin{align*}
\min & \quad \sum_{r \in R} C_r y_r \\
\sum_{r \in R} L_{mrq} y_r & \geq 1, \quad \forall m \in M, q = 0, i = 0, \\
\sum_{r \in R} L_{mrqi} y_r & \geq 0, \quad \forall m \in M, q \in Q_m \setminus \{0\}, i \in I_{mq} \setminus \{0\}, \\
\sum_{r \in R} UV_{tr} y_r & \leq AV_t, \quad \forall t \in T, \\
y_r & \geq 0, \quad \forall r \in R,
\end{align*}
\]

- Set partitioning constraints
- Set covering constraints
- CPLEX used for solving
Heuristic – column generation

<table>
<thead>
<tr>
<th>Route</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>17</th>
<th>19</th>
<th>40</th>
<th>45</th>
<th>46</th>
<th>65</th>
<th>Result</th>
<th>Target</th>
<th>Surplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>X0</td>
<td>X1</td>
<td>X2</td>
<td>X4</td>
<td>X5</td>
<td>X26</td>
<td>X28</td>
<td>X54</td>
<td>X62</td>
<td>X63</td>
<td>X102</td>
<td>X172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>1</td>
<td>1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>-1</td>
<td>-1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>6</td>
<td>243</td>
<td>32</td>
<td>397</td>
<td>22</td>
<td>987</td>
<td>1,259</td>
<td>982</td>
<td>1,996</td>
<td>1,193</td>
<td>1,193</td>
<td>3,249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choice</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,75</td>
<td>0,25</td>
<td>0,75</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Heuristic – the rounding heuristic

- Iterative heuristic
- One fractional variable is rounded up per iteration
- Tie break:
 - Route column > support column
 - Larger number of cargoes
- Stop criteria:
 - All variables are integer
 - Problem becomes infeasible
Future work

- Extend current heuristic:
 - Inclusion of non-simple routes
 - Inclusion of canal transits & restrictions
 - Transit time considerations
- Comparison of small instances
 - Solution quality
 - Time consumption
- Linearize the flow model to find a lower bound for the heuristic.
Routing and scheduling in liner shipping

Karina H Kjeldsen

CORAL – Centre for Operations Research Applications in Logistics
Aarhus School of Business

Currently visiting CIRRELT

From www.maersk.com